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Abstract Various theoretical approaches are implemented for
electrical characterization of two phase material systems. Most
of these approaches do not include possibility of percolation of
the dispersed material. In this article brick wall model is
extended on the systems exhibiting percolation. Transition
from brick wall geometry to corresponding equivalent circuits
provides final equations for effective dielectric constant. Com-
parison of theoretical results with experimental data shows that
developed equations provide good fitting of effective dielectric
constant to experimental values. Dielectric constants of both
phases and percolation threshold calculated from the fitting
match the corresponding experimental values of the phases.
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1 Introduction

Two phase dielectric systems with high dielectric contrast
between the phases are of interest for verity of practical
applications. For example, addition of high dielectric con-
stant powders in polymeric materials is a well known effi-
cient method of increasing specific capacitance of dielectric
materials [1–6]. Some promising results were also achieved
in the area of electrostatic energy storage devices using
biphasic systems with nano-powders as loading materials

[2]. Mixtures of different dielectric components often used
to adjust properties of composite materials [7, 8]. Presence
of porosity in ceramics could lead to significant changes in
electrical properties and needs to be controlled during ce-
ramic capacitors production [6].

Despite long history of investigations on two phase sys-
tems, theoretical background and mathematical description
for this type of systems are not fully understood. There are
significant differences between theoretically predicted val-
ues of effective dielectric constant for two phase systems
and experimental data especially for systems with high
dielectric contrast [9–12]. The principles for selection of
models and mathematical equations that would apply for a
particular two phase system are not well understood
[13–19]. Although it is relatively straightforward to find an
equation which fits particular experimental data, it is chal-
lenging to predict behavior of an unknown system or draw
conclusions about physical characteristics of two phase sys-
tems such as possible agglomeration or sedimentation of
powders suspended in liquids.

This paper gives a brief review of theoretical approaches
and corresponding equations for analysis of two phase sys-
tems. The main objective is to clarify the physical back-
ground of two phase systems with respect to their dielectric
properties. Mathematical equations describing two phase
systems with percolation and experimental verification of
these equations will be reported in a follow up article.

2 Theoretical approaches and models

Slurries or suspended particles in liquids are two phase sys-
tems inwhich both components are well intermixed. The same
is true for verity of two phase materials such as polymer-
ceramic composites and porous ceramic materials. Since an
applied electrical field has a complex three dimensional
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distribution in such systems, any simplified approach (for
example equivalent circuit method) cannot guaranty correct
calculation of effective dielectric constant of two phase mate-
rials. At the same time, equivalent circuit approach can be
useful in establishing of boundaries by which effective dielec-
tric constant will be limited.

Typical examples of these boundaries are series and
parallel connection between two phases. In the case when
two phases of a system are not homogeneously intermixed,
they may form columnar or layered structures as shown in
Fig. 1(a) and (b). A unit size cube with dimensions (1×1×
1cm: 1 cm3) was used to describe electrical properties of a
two phase system where electrical field is distributed uni-
formly in both phases. Parallel and series equivalent circuit
Eqs. (1) and (2), will represent exact dependences of effec-
tive dielectric (εeff) constant from volume fraction of one
component (i.e. X1 for component one) as following:

Parallel connection:

"EFF ¼ "1X1 þ "2 1� X1ð Þ ð1Þ
Where

εeff Effective dielectric constant of two phase system
ε1 and ε2 Dielectric constants of phases 1 and 2,

respectively
X1 Volume fraction of phase 1.

Series connection:

1

"EFF
¼ X1

"1
þ 1� X1

"2
ð2Þ

Figure 2 shows dependence between εeff and volume
fraction of component 1 (X1) for three different theoretical
models describing two phase systems, namely equivalent
circuit models, effective media and phenomenological
approaches,. Equations (1) and (2) are shown in all three
pictures of Fig. 2 as black dashed lines that define limitation
of the area for effective dielectric constant (εeff) of any two
phase system. However, the corresponding area is very
broad so that little information can be obtained by compar-
ing of experimental results with these theoretical limitations.

Experimental data from [6] were used as an example of
two phase systems with high dielectric contrast between the
components (as shown in Fig. 2). These experimental data
were obtained from measurements of barium titanate slur-
ries (upwards triangles). In addition, porous bulk samples of
barium titanate (downwards triangles) were also prepared by
sintering of powder compacts with different amount of
fugitive pore provider, so that combination of slurries and

Fig. 1 Equivalent circuits for analysis of two phase systems. (a)
Parallel connection (column structure); (b) Series connection (layered
structure). (c) Brick wall model (unit cube as elementary cell contain-
ing single particle); (d) Transition to equivalent circuit (Model1); (e)
Transition to equivalent circuit (Model2)

Fig. 2 Three different methods for εeff modeling. (a) Equivalent
circuit; (b) Effective media; (c) Phenomenological
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porous bulk samples cover the entire range of barium tita-
nate volume fractions X1 (from 0 to 1). Figure 2 reveals that
experimental data are within the area of theoretical curves
for parallel and series connection. Although the location of
the experimental data can be roughly predicted, for an
accurate prediction the data are far away from the curves
obtained using parallel and series models. Further details in
these models need to be included to improve fitting of the
data.

Brick wall model is based on two assumptions with
respect to distribution of two phases in the system [13];
namely, cubic particles are oriented and uniformly distrib-
uted within the second phase as shown in Fig. 1(c). This
model is more suitable for real systems and should provide
better fitting of experimental data. Unfortunately, direct
transition from this model to equivalent circuit is not possi-
ble because of non-uniformity in electrical field distribution.
Elementary cube in Fig. 1(c) can be divided on several
regions such that electrical field is suggested to be uniform
in each region allowing transition to equivalent circuit. Two
logical approaches for this division are shown in Fig. 1(d)
(model 1) and Fig. 1(e) (model 2). It is obvious that exact
solution for brick wall model should be within the area
surrounded by models 1 and 2 which is a significantly
narrower area in comparison with that produced by parallel
and series connection models. Detailed discussion of this
transition from brick wall model to equivalent circuits (mod-
els1 and 2) can be found in our previous article [13].
Corresponding formulas for effective dielectric constant
are presented in Eqs. 3 and 4.

Model1:

"EFF
"2

¼ 1

1� X1=3
1 þ X1=3

1

1�X2=3
1 1�"1

"2

� �
ð3Þ

Model2:

"EFF
"2

¼ 1� X2=3
1 þ X2=3

1

1� X1=3
1 1� "2

"1

� � ð4Þ

Brick wall model suggests that one phase in the system is
interconnected (phase 2 in Eqs. 3 and 4) and another phase is
disconnected (phase 1) in all ranges of X1, so that each model
generates a set of two curves depending on which phase is
considered as disconnected as shown in Fig. 2(a). Lower pare
of red and blue curves (marked as 1 and 2 in the picture for
models 1 and 2 correspondingly) correspond to slurries with
interconnected liquid and disconnected suspended powder.
Upper pare of red and blue curves (also marked as 1 and 2
in the picture for models 1 and 2) correspond to sintered

barium titanate cubes with varying porosity. Figure 2 reveals
that brick wall based models showmuch better fitting with the
experimental data than series and parallel models, but at
intermediate values of X1 differences are significant. More
importantly, experimental data are positioned out of the area
defined by models 1 and 2, i.e. experimental systems are
physically different from the brick wall model.

Another approach for evaluation of εeff is implemented by
effective media models. These models consider suspended
particles as electrical dipoles influencing electrical field in
the host phase that leads to changes in effective dielectric
constant of a two phase system. Mathematical representation
of this approach is Maxwell Wagner Eq. (5). Several modifi-
cations of this equation were developed for multi-component
systems by considering polarization of particles of a particular
composition suspended with other particles of different com-
position (effective media approaches). Bruggeman Eq. (6)
represents an example of this type of approaches.

Maxwell Wagner Equation [11, 13]:

"EFF � "2
"EFF þ 2"2

¼ X1
"1 � "2
"1 þ 2"2

ð5Þ

Bruggemann [14]:

X1 ¼ 1� "1 � "eff
"1 � "2

"2
"eff

� �1=3

ð6Þ

Similar to equivalent circuit models, bothMaxwell Wagner
and Bruggeman equations generate two different εeff (X1)
curves depending on whether each phase is a host or sus-
pended in a multi-component system as shown in Fig. 2(b). It
is revealed that Eqs. (5) and (6) provide better fitting for
experimental data (especially Bruggeman equation), but at
intermediate values of X1 differences are still significant.

Various empiric or quasi empiric equations were sug-
gested to insure better fitting of experimental data [14].
Examples of such approaches are logarithmic mixed rules
(7); Bottcher (8); and Looyenga (9) equations (Fig. 2(c)).

Logarithmic mixed rules:

"EFF ¼ "x11 "
1�x1ð Þ
2 ð7Þ

Bottcher (1952):

X1 ¼ "eff � "2ð Þ 2"eff þ "1ð Þ
3"eff "1 � "2ð Þ ð8Þ

Looyenga (1965):

X1 ¼
"
1=3
eff � "

1=3
2

� �

"
1=3
1 � "

1=3
2

� � ð9Þ

Empirical approaches do not consider distribution of a
particular phase in the mixture and generate only one curve
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to reveal εeff (X1) dependence in Fig. 2(c). It is shown that
empiric formulas provide better fitting to experimental data.
These formulas (especially the mixed rule equation) were
extensively used to calculate the value of εeff for various two
phase systems.

However, application of empiric equations is limited and
requires modifications for a given system. For example Eqs.
(7) and (9) are applicable only for two phase systems with
low dielectric contrast (high dielectric contrast, ε1/ε2→∞,
results in unlimited values of εeff for all X1), so that empiric
equations cannot be considered as universal.

It is obvious that any equation providing universal de-
scription of two phase systems should at least fulfill the
following boundary or extreme conditions for such systems:

(a) Single second
phase

X1 0 0 should give εeff 0 ε2;

(b) Single first
phase

X1 0 1 should give εeff 0 ε1;

(c) Low dielectric
contrast

ε2 ~ ε1 should give εeff ~ ε1 for all X1;

(d) High contrast ε1/ε2 → ∞ should give εeff (ε2,X1) ≠ f(ε1);

Equations (1, 2, 3, 4, 5 and 6) do not contradict these
boundary or extreme conditions but neither of the equations
are close to real experimental data. It is obvious that differ-
ences between equations and experimental data are due to
differences of phase distribution in two phase systems. A
specific parameter (or parameters) should be introduced into
the equations to address this issue.

3 Phase distribution and percolation

Physical modeling is a prospective method to correlate math-
ematical models and real physical objects [13]. The brick wall
model based on oriented cubic particles that are distributed
periodically in the host phase, allow exact physical modeling
as described in reference [13]. Experimental data and fitting
curves of εeff (X1) from reference [13] are shown in Fig. 3.
Barium titanate cubes (ε103850) periodically distributed in
butoxyethanol (ε2010) and propylene carbonate (ε2067)
were used for physical modeling. Figure 3 reveals that the
brick wall model (Eq. (3)–green curves and Eq. (4)–red
curves) completely surround experimental data and provide
good fitting with physical modeling. Maxwell Wagner model
(Eq. (5)–black curves) also situated between curves (3) and (4)
and provides nearly ideal fitting with experimental data. It is
reasonable to conclude that Eqs. (3, 4 and 5) are physically
correct and can be implemented in a universal model of two
phase systems. The question is how to extend these models on
real systems with particles of different shape and distribution.
Figure 2(a) and (b) show that the models do not provide good
fittings due to non-uniformity of material distribution in real

systems. It is clear that additional parameters need to be
included in the models.

Brick wall model describes an ideal case of material
distribution in a two phase system. Suspended phase par-
ticles are disconnected in all range of X1 until this phase fills
the whole volume (X1 0 1), so that such two phase systems
are without percolation (percolation threshold XP 0 1). Real
systems, however, percolate earlier (XP < 1) since particle
shape and distribution are different from that used in brick
wall model. Additional parameters need to be introduced in
models to address these differences.

Physical nature of Maxwell Wagner model or other ef-
fective media models do not consider any contact or perco-
lation between suspended particles independent on the
shape of particles. Percolation parameters can be introduced
in these models only empirically.

Since brick wall model considers physical contacts be-
tween particles, percolation can be introduced in this model
simply by changing the shape of suspended particles (intro-
duction elongation parameter α) (see Fig. 4). Suspended
cubes can be elongated (α>1) or suppressed (α<1) in direc-
tion of electrical field which will lead to columnar or layered
type of percolation, respectively. First type of percolation will
dominate in the case when suspended particles have higher
dielectric constant than host material whereas volume fraction
of particles at percolation threshold (XP) will be equal to the
square of reverse percolation parameter (XP 0 1/α2). Second
type of percolation will dominate when suspended particles
have lower dielectric constant than host material. Vol-
ume fraction of particles at percolation threshold (XP)
will be equal to percolation parameter (XP 0 α) ([19]).

Transition to equivalent circuit approach can be accom-
plished by the same way as considered for cubic particles. It
will generate two models surrounding exact solution (see
Fig. 4(a) and (b)). Corresponding equations are:

Fig. 3 Physical modeling using barium titanate cubes submerged in
different liquids shows that the brick-wall models and Maxwell-
Wagner equation give best fitting for two phase systems without
percolation [13]
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Model1*:

"EFF
"2

¼ 1

1� X1a2ð Þ1=3 þ X1a2ð Þ1=3

1� X1
að Þ2=3 1�"1

"2

� �
ð10Þ

Model2*:

"EFF
"2

¼ 1� X1

a

� �2=3

þ
X1
a

� �2=3

1� X1a2ð Þ1=3 1� "2
"1

� � ð11Þ

It is reasonable to suggest that averaging of Eqs. (10) and
(11) will provide good fitting for real two phase systems
with percolation as following:

"EFF ¼ "EFF Mod:1ð Þ � "EFF Mod:2ð Þð Þ1=2 ð12Þ
These modified models (Eqs. 10, 11 and 12) were com-

pared with experimental results from reference [6] as shown
in (Fig. 5). It reveals that modified brick wall model pro-
vides good fitting to experimental data for dispersed powder
(red curves) as well as for porous ceramic (blue curves).
Models1* and 2* are surrounding experimental points over
the entire range of X1 (thin curves). The averaging Eq. (12)
exactly follows experimental points. It was mentioned ear-
lier that two types of percolation are possible in the system
depending on which phase has a higher dielectric constant.
Corresponding formulas should be used to calculate perco-
lation threshold from the percolation parameter α. The
values of percolation threshold calculated by this method
(X1P 0 0.4 for slurries and X1P 0 0.33 or X2P 0 0.67 for
porous ceramics) are quite reasonable and within the range
of percolation for spherical particles.

The modified brick wall model (Eqs. 10, 11 and 12) can
be implemented as a universal model for two phase systems
within a reasonable range of percolation thresholds. This
model has clear physical background, and insures a good
fitting to experimental data.

4 Summary

Various physical approaches and corresponding equations
were used to analyze two phase dielectric systems. Brick wall
model has several advantages in comparison with other mod-
els. It is physically transparent, allows logical transition to
equivalent electrical circuit and can be extended on the systems
with percolation. Method based on brick wall model (Eqs. 10,
11 and 12) shows good fitting to experimental data obtained
from analysis of dielectric slurries and porous ceramics.
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